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Abstract. We study the problem of what causes prices to change. It is well known that trading impacts
prices — orders to buy drive the price up, and orders to sell drive it down. We introduce a means of decom-
posing the total impact of trading into two components, defining the mechanical impact of a trading order
as the change in future prices in the absence of any future changes in decision making, and the informa-
tional impact as the remainder of the total impact once mechanical impact is removed. This decomposition
is performed using order book data from the London Stock Exchange. The average mechanical impact of
a market order decays to zero as a function of time, at an asymptotic rate that is consistent with a power
law with an exponent of roughly 1.7. In contrast the average informational impact builds to approach a
constant value. Initially the impact is entirely mechanical, and is about half as big as the asymptotic infor-
mational impact. The size of the informational impact is positively correlated to mechanical impact. For
cases where the mechanical impact is zero for all times, we find that the informational impact is negative,
i.e. buy market orders that have no mechanical impact at all generate strong negative price responses.

PACS. 89.65.Gh Economics; econophysics, financial markets, business and management

1 Introduction

What causes prices to change? Despite a great deal of re-
search on this subject the answer remains far from clear.
On one hand, everyone agrees that prices respond to in-
formation — good news drives prices up and bad news
drives it down. On the other hand, prices often change
even when there is little information, sometimes by large
amounts [1,2]. How much of price changes are information
driven, and how much are due to other factors?

At an immediate level it is clear that trading is an
important cause of price change. When a trade is initi-
ated by a buyer, the price tends to go up, and when it is
initiated by a seller, it tends to go down. The change in
prices associated with a given trade is called price impact
(or alternatively market impact), and has now been ex-
tensively studied [3–20]. Price impact says nothing about
why trades are made: they could be made because of new
information or they could be made at random, for ex-
ample, because a participant needs cash for reasons that
are unrelated to anything going on in the market. This is
further complicated by the fact that market participants
regard trading and the price changes it produces as im-
portant signals about private information [21,22]. When
market participants observe a change in price, they may
reason that others have private information, which may
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cause them to trade, setting off a cascading avalanche of
price changes whose origin is difficult to ascertain.

Why do trades have price impact? One cause is men-
tioned above — they reflect information, and this informa-
tion is incorporated in price changes. There is, however,
an even more fundamental reason: when a trading order
is placed it causes purely mechanical changes in prices.
The word “mechanical” refers to the component of price
changes that is deterministic, that occurs under the rules
of the auction (dependent on the set of queued trading
orders) even in the absence of any information. Although
the mechanical impact of trading is often discussed (see,
e.g. Hopman [13]), up to this point no one has offered a
precise definition of what it means, or made any sugges-
tions as to how it can be measured.

In this paper we take advantage of the fact that in
most modern financial markets prices are formed using a
continuous double auction (see Sect. 2.1). Once the se-
quence of trading orders are given, the auction proceeds
according to deterministic rules, acting as a determinis-
tic dynamical system with exogenous inputs. While the
placement of trading orders may depend on complicated
factors, once the sequence of trading orders is given, price
formation is purely mechanical.

We propose a definition for mechanical impact and in-
troduce a practical method to compute it. The mechanical
impact of a trading order can be defined as the change in
future prices that occurs even if no other trading orders
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are changed in any way. This can be computed by intro-
ducing hypothetical alterations in the size of a trading
order, and using the deterministic nature of the continu-
ous double auction to simulate their effect on the future
price sequence, holding all other aspects of the trading
order sequence constant. In contrast, the informational
impact of a trading order is what is left of the total im-
pact after the mechanical impact is removed, i.e. it is the
component that depends on relationships between orders.
As discussed in Section 7.1, this can be either the causal
effect that a given order has on future orders, or corre-
lated effects between the placement of orders (e.g. due to
a common cause). More precise definitions are given in
Section 3.

We find that mechanical impact behaves very differ-
ently than informational impact. The immediate effect of
placing an order is entirely mechanical. The average me-
chanical impact decays to zero monotonically in time, al-
though at a slow rate. The long time behavior is consistent
with the hypothesis of a power law, with an exponent of
about 1.7. In contrast, informational impact grows with
time and approaches a constant value, at least over the
time horizon where statistics remain reliable. On average
the initial mechanical impact is about half the asymp-
totic informational impact. We find that the integrated
mechanical impact and the informational impact are pos-
itively correlated, except for the special case when the
mechanical impact is identically zero. In this case the in-
formational impact is on average non-zero, with the oppo-
site sense that one normally expects (i.e. buy orders with
zero mechanical impact generate negative price impact).

This paper is organized as follows: Section 2 gives a
brief summary of the properties of our data set and gives
some background information about the functioning of
the continuous double auction and the London Stock Ex-
change. In Section 3 we give more precise definitions of
total price impact and its decomposition into mechanical
and informational components. We then measure the av-
erage impacts and durations for real data in Section 4. In
Section 5 we study the effects of long-memory in amplify-
ing mechanical impact. In Section 6 we study the correla-
tions between mechanical and information impact. Finally
in Section 7 we discuss the implications and future direc-
tions of this work.

2 Background

2.1 Continuous double auction

We give a brief review of the continuous double auction,
which is the most common mechanism used for trading
in modern financial markets, and define some terminol-
ogy that will be essential in the remainder of the paper.
“Continuous” refers to the fact that the market is asyn-
chronous, so that trading orders can be placed at any time,
and orders are received one at a time, so there is unique
ordering of events. “Double” refers to the fact that both
buyers and sellers are allowed to update their orders at
will. Orders contain both a trading quantity and a limit

price, which is the worst price the trader is willing to ac-
cept1. The queue of unexecuted orders is called the limit
order book. A transaction is generated whenever an order
crosses the prices of orders of the opposite sign, e.g. if a
buy order has a higher price than the lowest priced sell
order. In this case we would say that the transaction is
buyer-initiated; similarly, if a sell order crosses the best
price, we say that the transaction is seller-initiated. If an
order does not generate an immediate transaction, it is
added to the limit order book without a transaction tak-
ing place. It is also possible to cancel an order sitting in
the limit order book at any time.

Real markets have a variety of different types of pos-
sible orders that vary from market to market, but for our
purposes it is possible to categorize all orders into three
types of events: effective market orders, defined as any or-
der or component of an order that generates a transaction;
effective limit orders, defined as any order or component
of an order that does not generate an immediate transac-
tion, and effective cancellations, defined as any removal of
an order from the limit order book without a transaction
taking place. Our notion of effective events may not be in
one-to-one correspondence with the actual orders that are
placed. For example, in a situation where the lowest priced
sell order on the book is to sell 1000 shares at 50 pounds,
an order to buy 3000 shares at 50 pounds will result in a
transaction for 1000 shares at 50 pounds and leave a buy
order sitting in the book for 2000 shares. This event cor-
responds to two effective orders, an effective market order
followed by an effective limit order.

The LSE has two parallel markets, the on-book mar-
ket and the off-book market. The on-book market oper-
ates via a continuous double auction as described above,
in which the limit order book is transparently visible to
everyone, but the identities of those placing the orders are
concealed. The off-book market operates through a bilat-
eral exchange in which agents contact each other via the
telephone or message boards and know the identity of the
agent they are trading with. Trades in the off-book mar-
ket are revealed only after they occur, and the intention
to trade beforehand is only communicated to a limited
circle of contacts. For this reason the on-book market is
widely regarded as the dominant force in price formation.
It accounts for more than half the number of trades and
about half the trading volume. Here we study only data
from the on-book market.

2.2 Data

For the purpose of this study we have used the TDS
(Transaction Data Service) data set for the on-book mar-
ket of the London Stock Exchange (LSE). The data set
consists of records of orders placed or cancelled within a

1 Sometimes the desired price is omitted, indicating a will-
ingness to accept any price. This is called a market order. A
buy market order is equivalent to a limit order with an infinite
limit price, and a sell market order is equivalent to a limit price
of zero.
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3 year period during 2000–2002. We study three of the
most liquid stocks, Astrazeneca (AZN), Vodafone (VOD),
and Lloyds (LLOY). We will use AZN for all the figures
in the paper, but we have repeated all the analyses for the
other stocks as well. Orders placed during opening and
closing auctions are excluded. The resulting reduced data
set contains about 570K transactions and 3.7M events for
AZN, 1.0M transactions and 4.0M events for VOD, and
600K transactions and 2.9M events for LLOY.

We have done some cleaning to reduce problems due to
data errors. Because the data set contains both a record of
transactions and a record of order placements we can test
to be sure that both records are consistent. We find some
problems that we do our best to correct. E.g. there are a
few cases where orders are placed that are never removed.
We remove such orders. A more serious problem is that
the sequencing of the orders is not accurate for orders that
are placed within the same second. This often results in
nonsensical behavior, such as negative spreads. When this
occurs we reorder the data to eliminate these problems.
This re-ordering is not always unique. However, this is
rare, so that the overall probability that an order is out
of sequence is much less than one percent. Mis-orderings
have a small effect at very short time scales (e.g. a few
events), but essentially no effect on longer time scales.

In working with the data we have to deal with the
problem of interday boundaries. Because the market closes
at night and over weekends, there are gaps in the data,
and the behavior of the data across these gaps can be
quite different than that within a trading day. To cope
with this problem we have tried two different approaches.
One is to reject any situations where we cross interday
boundaries. The other is to include situations that cross
interday boundaries, but to remove price changes that oc-
cur outside the period of our analysis. We use the latter
approach for the results presented here, but we do not find
that it makes a big difference in our results.

3 Decomposing price impact

3.1 Total price impact

Throughout this paper we work with the logarithmic mid-
price pt, which is defined as the average of the logarithm of
the best price for a sell order and the logarithm of the best
price for a buy order. The total price impact of an event
at time t is defined as the difference between the price
just before the event and the price τ time units later, i.e.,
∆pT

τ (t) = pt+τ − pt. Letting st be the sign of an event
at time t, we can merge buy and sell orders together and
define the average total price impact2 as

RT (τ) = 〈st(pt+τ − pt)〉 =
1
N

N∑

t=1

st(pt+τ − pt),

2 The multiplication by the sign avoids problems associated
with asymmetries between buying and selling. This was intro-
duced in reference [16], where it is called the response function.

where N is the size of the sample and 〈〉 indicates a time
average over time t. This lumps together the price impact
of buy orders (positive events) and sell orders (negative
events). In general these are different, but the difference
is small and negligible for our purpose here.

We have used two time units in this study: One is event
time, where an event is an effective limit order, an effective
market order, or a cancellation. The other is transaction
time, where a transaction is defined as an effective mar-
ket order3. The price corresponding to time t is defined
to be just before the event or transaction occurs, and in-
cremented by one immediately after that. For AZN about
17% of events in the data cause immediate transactions
(i.e. market buy/sell events). Hence, for AZN every unit
of transaction-time is the equivalent of roughly 7 event-
time units. For AZN on average one transaction time unit
=40 s4.

3.2 Mechanical impact

We define the mechanical impact in terms of the change
in the midprice when an event is removed, but all other
events are held constant. The idea is to measure the com-
ponent of price change that is purely due to the presence of
the event, excluding any effects that are caused by related
changes in the sequence of events. For the purposes of this
paper we base our definition on the removal of events, but
this is not the only possibility — one can also use addition
or partial addition or removal, as discussed in Section 7.2.

Our definition of mechanical impact takes advantage
of the fact that, under the rules of the continuous double
auction, any initial limit order book and sequence of events
generates a unique sequence of limit order books, which
correspond to a unique sequence of midprices. The auction
A can be regarded as a deterministic function

bt+1 = A(bt, ωt)

that maps an event ωt and a limit order book bt onto a
new limit order book bt+1. The event ωt can be an ef-
fective market order, limit order or cancellation, as de-
scribed in Section 2.1. For a given sequence of events
Ωt+τ

t+1 = {ωt+1, ωt+2, . . . , ωt+τ} the auction A can be it-
erated to generate the limit order book bt+τ at time t+ τ ,

bt+τ = A(bt, Ω
t+τ
t+1 ).

The continuous double auction can thus be thought of as
a deterministic dynamical system with initial condition bt

and exogenous input Ωt+1.

3 An effective market order may transact with several differ-
ent orders in the limit order book. From the point of view of
transaction time we consider this a single transaction.

4 The definition of mechanical impact that we propose here
relies on the use of natural time units, such as event time
or transaction time, as opposed to real time units (seconds).
The number of events in any fixed interval of real time is
highly variable, and so it is not clear how one would formu-
late equation (2) in real time.
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Each limit order book bt defines a unique logarithmic
midprice pt = p(bt). Simplifying the notation, we write the
composition of the auction operator A and the midpoint
price operator p as Π = p ◦ A. Thus, for any initial limit
order book bt and event sequence Ωt+τ

t+1 the logarithmic
midprice at time t + τ is

pt+τ = Π(bt, Ω
t+τ
t+1 ). (1)

There are a couple of situations that deserve more discus-
sion. First, for the midprice to be well-defined it is neces-
sary that the limit order book contain at least one order to
buy and one order to sell. This is not always the case. For
example for AZN, which is one of the more liquid stocks
in the LSE, out of roughly 3.7 million events we observe
171 cases where the midprice is not well-defined. Such sit-
uations become more common for less liquid stocks. In the
case where this happens, we simply say that the price is
undefined. In our empirical work we discard such cases.

The second potentially problematic situation occurs
when there is a cancellation of an order that does not ex-
ist. The most common cause of this is the lag between the
receipt of information and the time needed to react to im-
plement a cancellation, which can result in an order being
executed before it can be cancelled. There are 231 cases of
this for AZN during the period of our sample. When this
occurs the exchange simply ignores the cancellation. We
do the same, treating the cancellation as a null event, i.e.
one that leaves the limit order book unchanged.

For the purposes of this paper we define the mechanical
impact of an event ωt in terms of its effect on the price un-
der its hypothetical removal. More precisely, making use of
equation (1), we define the mechanical impact ∆pM

τ (t) as

∆pM
τ (t) = Π(bt, Ω

t+τ
t+1 ) − Π(bt−1, Ω

t+τ
t+1 ). (2)

In other words, the mechanical impact of event ωt at time
t + τ is the difference between the real price Π(bt, Ω

t+τ
t+1 )

and the hypothetical price Π(bt−1, Ω
t+τ
t+1 ) when ωt is re-

moved, but the subsequent sequence of events is left the
same. The real price contains both the informational and
mechanical impact, while the hypothetical price contains
only the informational impact, so that under subtraction
only the mechanical impact remains. This isolates the part
of the price impact that is “purely mechanical”, in the
sense that it is generated solely by the effect of placing
an order in the book and observing its effect under the
deterministic operation of the continuous double auction.
Although we have not been able to prove this, we conjec-
ture that when ωt is a buy order (st = +1) the continuous
double auction guarantees that ∆pM

τ ≥ 0 for all τ , and for
sell orders (st = −1) ∆pM

τ ≤ 0. In our empirical investiga-
tions we have not seen any exceptions to this conjecture.
For τ ≤ 0 the mechanical impact is by definition zero.

Removing an order to compute the mechanical impact
increases the number of cancellations of orders that do
not exist. For example, suppose that in the real event se-
quence the buy market order ωt removes a sell limit order
ω̂. When we generate the hypothetical sequence by re-
moving ωt, ω̂ is left in the book, so that the best ask price

remains lower than it did in the real sequence. This can
cause a subsequent buy limit order to be executed that
would otherwise have remained in the book and later been
cancelled. When this occurs, as already stated, we treat
this as a null event. For AZN, for example, we find that
about 35% of the time removing ωt generates at least one
cancellation of a nonexistent order, i.e. 19% of the time
there is one such event, 7% of the time two such events,
etc., for an average of 0.73 such events per removal.

In the hypothetical series we also observe a slight in-
crease in the number of undefined prices. For AZN, for
example, this happens in 0.01% of the cases, in contrast
to 0.003% for the real series. We omit these cases from our
analysis.

Finally, we need to deal with the possibility that the
assignment of effective orders might alter the number of
events in the hypothetical series. This can happen, for
example, because an order that is fully executed in the
real series, and was therefore an effective market order, is
now only partially executed, and so becomes an effective
market order followed by an effective limit order. We deal
with this by preserving the alignment of the hypothetical
and real data series based on the real events. This prevents
the possibility of a persistent misalignment which could
create a persistent artificial price difference between the
two series. In any case we find that such situations are
rare.

In this paper we study only the impact of effective mar-
ket orders. In Figure 1 we show a typical example compar-
ing a real price sequence to a hypothetical price sequence
with a buy order removed5. It is clear that the mechanical
impact is highly variable. To give the reader a feeling for
the variety of possibilities, in Figure 2 we show a set of
four examples of the mechanical impact of effective mar-
ket orders6. The mechanical impact is highly variable. In
some cases there is an initial burst of mechanical impact,
which dies to zero and then remains there. In some cases
there are long gaps in which the impact remains at zero
and then takes on nonzero values after more than a thou-
sand transactions. In other cases there is no mechanical
impact at all.

3.3 Informational impact

The informational impact is defined as the portion of total
impact that cannot be explained by mechanical impact,
i.e.

∆pI
τ = ∆pT

τ − ∆pM
τ .

5 The TDS data set comes with a series of bids and offers
computed by the exchange. These do not always match the
prices that we compute by applying the continuous double
auction algorithm to the event series. For consistency of com-
parison between the real and hypothetical series, we use the
latter.

6 In this and the remaining figures we compute impacts in
units of the average spread. For each stock and the full time
period of each data set, the average spread is computed by
sampling just before transactions.
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(a)

(b)

Fig. 1. (a) Initial and modified price sequences for the removal
of a buy market order and (b) the resulting mechanical impact
(which is just the difference between the two price series in
(a)). Note that this figure and all other figures in this paper
are based on the stock AZN. Prices are in pence and impacts
are in units of average spread.

Whatever components of the total impact not explained
by mechanical impact must be due to correlations between
the order ωt and other events. With the data we have it
is impossible to say whether the placement of the order
ωt causes changes in future events Ωt+1, or whether the
properties of Ωt+1 are correlated with those of ωt due to
a common cause. In either case, changes in price that are
not caused mechanically must be due to information —
either the information contained in ωt affecting Ωt+1, or
external information affecting both ωt and Ωt+1. See the
discussion in Section 7.1.

4 Empirical study of impact
In this section we perform statistical analysis of average
properties of price impact. For the remainder of this paper
we will only study the impacts of effective market orders,
deferring the problem of studying effective limit orders
and cancellations.

Fig. 2. Examples of mechanical price impact (in units of aver-
age spread) in transaction time. The top two plots correspond
to buy orders and the bottom two to sell orders.
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(a)

(b)

Fig. 3. Average mechanical impact RM (τ ) = 〈st∆pM
τ (t)〉t (red

squares) and total impact RT (τ ) = 〈st∆pT
τ (t)〉t (blue stars),

in units of the average spread, plotted in (a) event time and
(b) transaction time.

4.1 Average impact

The first property we study is the average impact as a
function of time. In Figure 3 we compare the average me-
chanical impact RM (τ) = 〈st∆pM

τ (t)〉t and the average
total impact RT (τ) = 〈st∆pT

τ (t)〉t. For event time the to-
tal impact and mechanical impact are by definition the
same at τ = 1. This is because in moving from τ = 0
to τ = 1 the only event that affects the price is the refer-
ence event ωt — alterations in Ωt+1 cannot effect ∆pT

1 . For
larger values of τ the mechanical impact decreases and the
informational impact increases. Over the timescale shown
here (100 events), when measured in units of the aver-
age spread, the mechanical impact is initially about 0.17,
and then decays monotonically toward zero. In contrast
the total impact increases toward what appears to be an
asymptotically constant value slightly greater than 0.3.
This the source of our statement that the initial value of
mechanical impact is about half the asymptotic value of

Fig. 4. Average mechanical impact in units of the average
spread, plotted in double logarithmic scale. The x’s are the
data and the solid line shows a power law fit to the tail.

the total impact. Similar results are observed for VOD
and LLOY.

Figure 3b shows the same behavior in transaction time.
In this case the mechanical impact and total impact di-
verge immediately at τ = 1. This is not surprising, since
one increment of transaction time is equivalent to roughly
6.8 increments of event time. The initial gap between the
total and the mechanical impacts in transaction time is
roughly, but not exactly consistent with the results in
event time7 at τ = 6.8. Once again, except for statisti-
cal fluctuations the total impact appears to approach a
constant value out to τ = 100.

The total impact of market orders has received exten-
sive study in several different markets [3,4,7–15]. Here we
focus on the behavior as a function of time [5,6,16–20].
Our results on total impact are consistent with previous
results. We find that total impact builds with time and
appears to approach a constant, up to the point where
statistical fluctuations make the results questionable.

In sharp contrast to the total impact, the mechani-
cal impact decays toward zero. To get a better view in
Figure 4 we plot the average mechanical impact for times
up to 2000 transactions in log-log scale8. We fit a power
law of the form Kτ−λ to what we subjectively deem to

7 It is not possible to superimpose the event time and trans-
action time curves by simply rescaling the time axis. The rea-
son is somewhat subtle. It depends on the fact that transac-
tions on average have bigger effects on prices than other events.
Because we create a hypothetical sequence by removing market
orders, each event time interval always begins with a transac-
tion, but between 6.8 events there can be more than one trans-
action. For AZN on average there are 1.2 transactions. As a
result, if one simply rescales the time axis by a factor of 6.8,
the average mechanical impact in event time is greater than
that in transaction time.

8 To make the fluctuations in the data clearer in this and
other figures, we have placed x’s at diminishing intervals of
time to get a better view in log-log scale.
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be the asymptotic region of the tail. For AZN we find
λ = 1.6, for VOD λ = 1.8, and for LLOY λ = 1.7. Given
that the scaling region is only over a little more than
an order of magnitude, this is certainly not convincing
evidence that the average mechanical impact scales as a
power law. Nonetheless, plotting in semi-log coordinates
makes it quite clear that the decay is slower than expo-
nential. We have not attempted to put any error bars on
these estimates because they are difficult to assign9. These
should just be viewed as representative values.

It is clear from simple theoretical arguments that the
mechanical impact must decay to zero. From the definition
of equation (2) the only difference between the real price
series and the hypothetical series with the order removed
is the initial order book bt. As orders disappear from the
order book the difference between the real and the hypo-
thetical price series decreases. Once there are no orders
that were in the original order book there is no longer any
memory of the initial condition, and there will no longer
be any difference between the real and the hypothetical
price series. Previous studies suggest that the distribution
of times for an order to remain in the book before be-
ing removed by a transaction decays as a power law with
an exponent near 1.5, and that the distribution of times
to cancellation decays as a power law with an exponent
near 2 [23,24]. These both suggest that we should expect
an asymptotic power law decay of the average mechanical
impact, though the precise argument linking these is not
clear.

Under the rules of the LSE no order can persist for
more than one month, which would seem to imply an up-
per bound on the persistence of the mechanical impact.
However, it is quite common for orders to be immediately
replaced, so that from an effective point of view some or-
ders can persist for very long times, e.g. six months or
more [25]. For practical reasons related to limitations in
computation time we have not measured the mechanical
impact for time intervals longer than 2000 transactions,
corresponding to a period of about two trading days. This
doesn’t appear to be an important restriction, since the
average mechanical impact at τ = 2000 is less than three
orders of magnitude less than its initial value, and events
where the mechanical impact is non-zero for τ > 2000 are
fairly rare.

As already mentioned, the hypothetical sequences con-
tain more cancellations of nonexistent orders, which are
treated as null events. We find that on average removals
that generate more null events have larger mechanical im-
pact. This is not surprising, since the generation of null
events implies larger perturbations in the limit order book.
(See the example discussed in the paragraph following
Eq. (2).)

9 In addition to statistical fluctuations, there are problems
caused by the slow convergence to asymptotic scaling. Careful
testing of the power law hypothesis and proper assignment of
error bars for scaling exponents is beyond the scope of this
paper.

(a)

(b)

Fig. 5. Distribution of mechanical impact durations. The top
panel is the probability of each duration, and the bottom panel
covers a longer time period on double logarithmic scale. The
x’s correspond to the empirical measurements, and the line to
a fit using ordinary least squares.

4.2 Duration and size

We define the duration of the mechanical impact of an or-
der as the largest τ for which that order has a non-zero
impact. Figure 5 shows a histogram of the durations in
transaction time. The most common duration is zero —
in transaction time about 33% of the events have no im-
pact at all. The duration probability decreases rapidly and
roughly monotonically. To get a better view in Figure 5b
we show this for a longer time period in double logarithmic
scale and fit a power law Kτ−δ over what we subjectively
deem to be the tail. For AZN we estimate δ = 1.5, for
VOD δ = 1.7 and for LLOY δ = 1.7.

Because mechanical impact is transitory, we define a
notion of size in terms of the impact integrated over time.
The integrated size SM

τ (t) up to time τ associated with
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Fig. 6. The distribution of integrated mechanical impact sizes
SM

τ (t), with τ = 2000. The x’s are the real data and the solid
line is a fit to a power law. The units of the x axis are price ×
time, where price differences are measured in units of average
spread and time is measured in transactions.

the impact event at time t is defined as

SM
τ (t) =

τ∑

i=1

st∆pM
i (t).

The distribution of integrated sizes is shown in Figure 6
in double logarithmic scale.

If we fit a power law of the form Kτ−α for AZN we
find α = 3.3, for VOD α = 3.4, and for LLOY α = 3.4.
Given the small size of the scaling region and the large
size of the scaling exponents, it is not at all clear that the
integrated impact size asymptotically scales as a power
law.

5 Amplification by long-memory

The effect of mechanical impact on prices is amplified by
the long-memory of the order signs st. As we explain in
more detail below, the long-memory of order signs refers to
the strong tendency of buy orders to be followed by more
buy orders, and sell orders to be followed by more sell or-
ders. When we compute mechanical impact we subtract
the price sequence associated with two series of orders,
both of which contain long-memory. The long-memory is
thus removed. Nonetheless, since buy orders generate pos-
itive mechanical impacts and sell orders generate negative
mechanical impacts, the long-memory of orders amplifies
the mechanical impact of any given order. In this section
we make all this more precise, compute the amplification
due to long-memory, and show that it is not strong enough
to create a persistent impact from the transitory nature
of individual mechanical impacts.

To make the definition of the long-memory of order
signs more precise, define

P+
τ = P (st = 0 & st+τ = 0) + P (st = 1 & st+τ = 1)

Fig. 7. An illustration of the long-memory of order signs. The
ratio P+

τ /P−
τ − 1 is plotted on double logarithmic scale (x’s)

and compared to a power law (line) with exponent γ = 0.59.

as the probability that transactions at time t and t + τ
have the same sign and similarly P−

τ as the probability
that they have the opposite sign. For all the stock mar-
kets examined so far (Paris, London, NYSE) the sequence
of signs has long-memory, i.e. the autocorrelation func-
tion decays as a power law τ−γ [16,18,17,19]. This also
implies that P+

τ /P−
τ − 1 ∼ τ−γ . The exponent γ appears

to vary somewhat depending on the market and the stock,
but it is consistently less than one. Long-memory is illus-
trated for AZN in Figure 7. Lillo et al. [26] hypothesized
that long-memory is caused by strategic order splitting
and presented results supporting the hypothesis. More re-
cent results that make use of transaction identity codes
strongly support this [27].

The long-memory of order signs creates a puzzle be-
cause it naively suggests that prices should be inef-
ficient. Figure 7 makes it clear that order signs are
predictable based on their past history. Given that buyer-
initiated trades have positive price impact and seller-
initiated trades have negative impact, this suggests that
price movements should also be predictable. This is not
the case: price changes are essentially uncorrelated.

Two explanations have been offered to explain how
transactions can have long-memory while prices are effi-
cient. One is due to Bouchaud et al. [16,17]. They pos-
tulate the existence of a bare impact function G(τ), such
that the total impact is the sum of the bare impact of
each trade. If G(τ) decays as a power law G(τ) ∼ τ−β ,
providing β = (1−γ)/2, due to the long-memory the bare
impacts will accumulate so that the total impact asymp-
totically approaches a constant, i.e. the decay of the bare
impact and the amplification due to long-memory cancel
each other. Providing the constant is less than half the
spread (which is observed in practice), the market is effi-
cient [20].

The temporary nature of the average mechanical im-
pact response function shown in Figure 3 suggests that
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it might provide a fundamental explanation for the de-
cay of the bare impact G(τ). However, the average me-
chanical impact decays too fast for this to be true. Ac-
cording to the formula of the previous paragraph, using
γ = 0.6 implies a bare propagator exponent of β = 0.2.
This is much smaller than the exponent λ = 1.6 measured
for mechanical impact. Thus it seems that this cannot
be the explanation. Instead, the full explanation involves
the existence of a liquidity imbalance between buying and
selling10. Nonetheless, the decaying nature of the mechan-
ical impact may play an important role in making the bare
impact temporary. The details of this remain to be worked
out.

When we compute the mechanical impact, because
the perturbed transaction sequence and the reference se-
quence in equation (2) both have long memory, after sub-
tracting them any effects due to long-memory disappear.
Nonetheless, it is clear that long-memory will amplify me-
chanical impact, for the same reasons it amplifies the bare
impact. Let the cumulative impact of an order at time
τ be C(τ) and consider, for example, a buy order. This
generates a positive average impact at τ = 1 of RM (1).
At τ = 2 its average impact is reduced to RM (2), but we
also need to take into account that the order at τ = 1
is more likely to be a buy order than a sell order, so that
there is an additional contribution (P+

1 −P−
1 )RM (1). Sim-

ilarly at τ = 3 the average cumulative impact C(3) =
RM (3) + (P+

1 − P−
1 )RM (2) + (P+

2 − P−
2 )RM (1). Noting

that by definition P+
0 = 1 and P−

0 = 0, the general ex-
pression is

C(τ) =
τ∑

i=1

(P+
τ−i − P−

τ−i)R
M (i). (3)

In Figure 8a we compare the raw mechanical impact, the
cumulative mechanical impact C(τ) including amplifica-
tion by long-memory, the informational impact, and the
total impact. Plotting the mechanical impact adjusted for
long-memory on double logarithmic scale makes it clear
that it is still decaying to zero, albeit slower than the raw
mechanical impact. Fitting a power law to the long-time
behavior of the form Kτ−η, as shown in Figure 8b gives
an exponent of about η = 0.6.

In conclusion, while it is clear that the correlations as-
sociated with the long-memory of order signs amplify me-
chanical impact, they are not sufficiently strong to over-
come the rapid decay of the mechanical impact to make
it permanent.

10 The hypothesis of a liquidity imbalance between buying
and selling was offered by Lillo and Farmer [18] and modified
and demonstrated to be effective by Farmer et al. [19]. When
buyer-initiated transactions become more likely, the liquid-
ity for buying increases and the liquidity for selling decreases
(though with some time lag), making the price responses to
buy orders smaller on average than those to sell orders. This
damps the effect of the long-memory and keeps the market
efficient.

(a)

(b)

Fig. 8. (a) A comparison of the average mechanical, infor-
mational, and total impacts with and without adjustments
for long-memory. In ascending order we show the average
mechanical impact RM (τ ), the mechanical impact C(τ ) ad-
justed for long-memory, the informational impact adjusted
for long-memory RT (τ ) − C(τ ), the informational impact
RT (τ ) − RM (τ ), and the total impact RT (τ ), all as a func-
tion of time. In (b) we show C(τ ) over a longer time period in
double logarithmic scale.

6 Correlation between mechanical
and informational impacts

We now study the correlation between mechanical and
informational impact. Because mechanical impact is tem-
porary, it is not obvious what feature of mechanical im-
pact is likely to be most important. Studying the correla-
tion between mechanical and informational impact is mo-
tivated in part by the idea that prices are informative, i.e.
as agents observe price changes induced by others, they
update their own information. Since mechanical impacts
are temporary, it is not clear what others will respond
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(a)

(b)

Fig. 9. The informational impact at τ = 20 vs. mechanical im-
pact integrated up to τ = 20, SM

20 (t). In (a) the dots correspond
to individual transactions, and the line is a regression using
ordinary least squares. In (b) the data is binned based on the
integrated mechanical impacts, illustrating that even though
the relationship is noisy, the correlation increases consistently
with increasing size. Note that the black square corresponds to
the case where the mechanical impact is strictly zero.

to, particularly if the response is not instantaneous. We
somewhat arbitrarily use the integrated size, though one
could easily argue that other properties of the mechanical
impact might be more reasonable. See the discussion in
Section 7.1.

In Figure 9 we plot the informational impact at τ = 20
against the size of the mechanical impact integrated up to
τ = 20. The relationship for individual transactions is
very noisy, but the positive association between mechan-
ical and informational impact is quite clear. The correla-
tion is ρ = 0.14. A linear regression of the form ∆pI

20(t) =
aS20(t) + b yields a positive slope a = 0.187± 0.003. The
error bar corresponds to a t-statistic of 55. It is computed

Fig. 10. Informational impact as a function of time for trans-
actions with different levels of integrated mechanical impact.
We show the average informational impact from τ = 1 to
τ = 20 for three equal sized quantiles of the transactions with
nonzero integrated mechanical impact S20(t), as well as for all
transactions where the mechanical impact is strictly zero.

under the assumption of normally distributed IID data,
and is certainly too optimistic, but it is nonetheless quite
clear that the correlation is highly statistically significant.
Binning the data based on the integrated size of the me-
chanical impact shows that the relationship is essentially
monotonically increasing — large integrated mechanical
impacts are associated with large informational impacts.
The positive association between informational and me-
chanical impacts is clearly highly statistically significant.

We find the surprising result that for cases where the
mechanical impact is strictly zero, the informational im-
pact has the opposite sign that one would normally expect,
e.g. buy orders with strictly zero mechanical impact tend
to have negative total price impacts. (Recall that when the
mechanical impact is zero informational and total impact
are the same). Strictly zero means that the mechanical im-
pact is zero for all times in units of event-time rather than
transaction time (the difference is situations where there
is a non-zero impact in event time that dies out before
the first transaction). For AZN, for example, 13% of effec-
tive market orders have strictly zero mechanical impact,
in contrast to 33% in transaction time. To illustrate this in
Figure 9b we have added the strictly zero case by placing
two values over 0 on the x-axis. The first is consistent with
the rest of the figure and corresponds to SM

20 = 0, while the
square corresponds to cases where the mechanical impact
is strictly zero. The average informational impact in the
latter case is 〈st∆pI

20(t)〉t = −0.4, in contrast to the case
where SM

20 = 0, which has roughly 〈st∆pI
20(t)〉t = 0. Thus,

as soon as there is any nonzero mechanical impact at all,
the average informational impact jumps from a strongly
negative value to a positive value.

The relationship between mechanical and informa-
tional impact remains consistent through time. In
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Figure 10 we divide the mechanical impact into four differ-
ent groups based on their mechanical impact and track the
informational impact through time. The first group con-
sists of the cases whose impact is strictly zero and the oth-
ers to the nonzero mechanical impacts, which are sorted
based on SM

20 into three groups with an equal number of
events. As before, the behavior of the informational im-
pact when the mechanical impact is strictly zero is quite
different than that when it is nonzero. When the mechan-
ical impact is strictly zero, the informational impact has
a slightly positive value at τ = 1, but then becomes in-
creasingly negative as τ increases. We hypothesize that
this occurs because orders with no mechanical impact at
all tend to be associated with price reversals. For exam-
ple, consider the case where we remove a buy market order
which is too small to remove the best ask, in a situation in
which the price immediately drops. New sell orders will fill
in below the best ask. In this case it is very unlikely that
removal of the buy market order will make any difference
to the midprice. In contrast, had the price continued to
go up, the rearrangement in the level of sell limit orders
triggered by the removal of the buy market order is much
more likely to generate a perturbation in the price series.

7 Summary

We have introduced a precise definition of the mechanical
impact of a transaction and demonstrated how it can be
measured. The time behavior of the mechanical impact is
highly variable. On average, however, for market orders it
is strongest immediately after the order is placed, and then
decays to zero over time. It is initially the dominant com-
ponent of the total price impact, but the relative fraction
decreases as the mechanical impact shrinks and the infor-
mational impact grows to approach its asymptotic value.
Initially the mechanical impact is about half as large as
the asymptotic informational impact.

7.1 Causality

We have defined the informational impact as what is left
over of the total impact once the purely mechanical impact
is removed. The justification for this is that the remain-
der depends on correlations between events. I.e., unless
there is something correlating the information in the refer-
ence event ωt to the subsequent sequence of events Ωt+1,
there will be no informational impact. This leaves open
the question of causality. One hypothesis is that event ωt

causes changes in the subsequent events Ωt+1. The alter-
native hypothesis is that there is a common cause for ωt

and any aspects of Ωt+1 that are correlated with its pres-
ence. Based on the information available here we cannot
distinguish these two hypotheses.

The idea of a common cause is easy to understand.
Suppose, for example, that an external event causes a
group of investors to decide to buy, and they submit a
series of buy orders without paying any attention to each
other. This will cause a rise in price associated with each

buy order, due both to the mechanical impact of each
buy order, and the mechanical impact of all the buy or-
ders that are correlated with it. The correlated part of
the price rise will be measured as an informational impact
(reflecting the external information).

The causal hypothesis is more interesting, and is con-
nected to the role of trading and its associated price
changes in transmitting information. In a world where
individual agents have private information, trading pro-
vides a mechanism for disseminating that information. If
an agent receives new private information, this may cause
him or her to trade. Trading affects the price, which is
visible to everyone. An intelligent agent with different in-
formation will observe the change in price, and will infer
that his or her valuation must be wrong. As a result, each
agent will arrive at a valuation that is based partly on
private information and partly on price and other pub-
lic information. Prices are thus a mechanism for making
private information public. This idea is well-accepted in
economic theory [21,22].

Insofar as the causal hypothesis is correct, the tem-
porary nature of mechanical impact suggests that private
information is made public through a highly dynamic pro-
cess. As each trade happens, it causes a mechanical im-
pact, which is a signal visible to all. Before it decays away,
it can cause other trades of the same sign to occur, or it
can cause cancellations to occur, or (probably most im-
portant) it can cause changes in the limit prices of subse-
quent orders. Each of these events has its own mechanical
impact, creating a cascade of impacts giving rise to a per-
manent change. The avalanche-like nature of this process
suggests possible analogies to self-organized criticality.

At this stage we are unable to say to what extent com-
mon cause or causality are at play. It seems likely that
both are acting. We do know that these series display long-
memory, and as discussed in Section 5, evidence suggests
that this is essentially an exogenous phenomenon, which
from this point of view is a common cause.

7.2 Generalizations

The mechanical impact can be defined in a way that is
more general than what we have presented here. We have
defined mechanical impact by fully removing an event,
but there are many other possible modifications of the
order book that are worth considering. Equation (2) can
be generalized to read

∆pM
τ (t) = Π(bt, Ω

t+τ
t+1 ) − Π(b̃t, Ω

t+τ
t+1 ) (4)

where bt is the real order book at time t and b̃t is any modi-
fication of it that may yield a useful interpretation. For ex-
ample, b̃t might be the true order book with an additional
order added, or it could be an infinitesimal modification
of a given order, e.g. with the size of the most recent order
ωt slightly enhanced or diminished. This potentially allows
one to make a quasi-continuous analysis, effectively esti-
mating the derivative of the mechanical changes in prices
with respect to changes in supply or demand.
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7.3 Future work

We have left many questions unanswered in this work. In
addition to the generalization discussed above, there are
many topics that remain to be investigated. For example,
what is the dependence of mechanical impact on the size
of orders? Previous results have shown that the total im-
pact is remarkably independent of order size [28,29]; is
this also true for mechanical impact? Is the mechanical
impact symmetric under increases or decreases in the size
of ωt? What does the price impact of cancellation and
limit orders look like? We hope to investigate these and
other questions in the future.

We would like to thank Barclays Bank and the Capital Mar-
kets CRC for supporting this research, J.-P. Bouchaud, Marc
Potters, Austin Gerig, and Adlar Kim for useful comments,
and the London Stock Exchange for supplying data.
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